
Nested data and iteration
Name:

1. Consider this program:

1 def main() -> None:
2 a = [0,0]
3 l = a
4 l[0] = 1
5 print(a)
6 print(l)
7 a = [3,3]
8 print(a)
9 print(l)

10 l[1] = 2
11 print(a)
12 print(l)
13

14 main()

What is the output of this program? Draw the function frame diagrams (showing the variables
in each function frame) while tracing the code.

main’s Frame

a -> △ ⃝
l -> △
△ -> [01, 02]

⃝ -> [3,3]

[1, 0]
[1, 0]
[3, 3]
[1, 0]
[3, 3]
[1, 2]



Name:

2. Consider this program:

1 def mystA(x: int, a: list) -> None:
2 x = x + 1
3 a[x] = a[x] + 2
4 print(x)
5 print(a)
6 def mystB(n: int, lst: list) -> int:
7 lst = [5,5]
8 lst[0] = n
9 n = n + 2

10 print(n)
11 print(lst)
12 return n
13 def main() -> None:
14 x = 0
15 a = [0,0]
16 mystA(x, a)
17 print(x)
18 print(a)
19 x = x + 1
20 mystB(x, a)
21 print(x)
22 print(a)
23 main()

What is the output of this program? Draw the function frame diagrams (showing the variables
in each function frame) while tracing the code.

main’s Frame mystA’s Frame mystB’s Frame

x -> 0 1 x -> 0 1 n -> 1 3

a -> △ a -> △ lst -> △ ⃝
△ -> [0,02] ⃝ -> [51,5]

1
[0, 2]
0
[0, 2]
3
[1, 5]
1
[0, 2]



Model 1 Nested Lists
Elements in a list can be of sequence type (string or list), for example, in a list of words, each
element is a string type. Similarly, here is an example of a list of lists:

states = [
['AL','AK','AZ','AR'],
['CA', 'CO','CT'],
['DC','DE'],
['FL'],
['GA'],
['HI'],
['ID','IL','IN','IA']

]
The states list contains sub-lists with states that start with the same letter.

3. Evaluate each expression in order and record the output for each line in the second column.

Python code Output

print(states[0]) [’AL’,’AK’,’AZ’,’AR’]

print(states[-1]) [’ID’,’IL’,’IN’,’IA’]

print(states[4][-1]) 'GA'

print(states[5][0]) 'HI'

print(len(states)) 7

print(len(states[1])) 3

print(len(states[3])) 1

print(len(states[3][0])) 2

print(len(states[3][1])) Index Error (Runtime)

print(states[3][0][0]) 'F'

4. What does the following code snippet print?

1 for sublist in states:
2 letters = ''
3 for state in sublist:
4 letters += state[1]
5 print(letters)

LKZR
AOT
CE
L
A
I
DLNA



5. Modify the code in the previous problem to print all the letters inside the list, that is:
'ALAKAZARCACOCTDCDEFLGAHIIDILINIA'

1 letters = ''
2 for sublist in states:
3 for state in sublist:
4 letters += state
5

6 print(letters)

6. Write a function called max_states that takes in the list of states and returns the maximum
size of its sublists.

1 def max_states(states: list) -> int:
2 max = 0
3 for sublist in states:
4 if len(sublist) > max:
5 max = len(sublist)
6 return max

7. Write a function called min_states that takes in the list of states and returns the first sublist
with minimum size.

1 def min_states(states: list) -> list:
2 min_list = states[0]
3 for sublist in states:
4 if len(sublist) < len(min_list):
5 min_list = sublist
6 return min_list

8. Challenging: Modify the code in the previous problem to print all the unique letters inside
the list, that is: 'ACDFGHILKZROTEN'

1 letters = ''
2 for sublist in states:
3 if sublist[0][0] not in letters:
4 letters += sublist[0][0]
5

6 for sublist in states:
7 for state in sublist:
8 if state[1] not in letters:
9 letters += state[1]

10

11 print(letters)



Model 2 Nested Dictionaries

Collections/containers (sequence-type like strings and lists, and dictionaries/maps) can be
nested in arbitrary ways. For example, the following data could be described as a “dictionary
of dictionaries of integers and lists of strings”:

movies = {
"Casablanca": {

"year": 1942,
"genres": ["Drama", "Romance", "War"],

},
"Star Wars": {

"year": 1977,
"genres": ["Action", "Adventure", "Fantasy"],

},
"Groundhog Day": {

"year": 1993,
"genres": ["Comedy", "Fantasy", "Romance"],

},
}

9. Evaluate the following expressions in the order that they are listed:

Python code Output

movies prints all of movies without any formatting

movies["Casablanca"] {’genres’: [’Drama’, ’Romance’, ’War’], ’year’: 1942}

movies["Casablanca"]["year"] 1942

movies["Casablanca"]["genres"] [’Drama’, ’Romance’, ’War’]

type(movies) <class ’dict’>

type(movies["Casablanca"]) <class ’dict’>

type(movies["Casablanca"]["year"]) <class ’int’>

type(movies["Casablanca"]["genres"]) <class ’list’>

len(movies) 3

len(movies["Casablanca"]) 2

len(movies["Casablanca"]["year"]) TypeError: object of type ’int’ has no len()

len(movies["Casablanca"]["genres"]) 3

for key in movies:
print(key) prints the keys: Casablanca, Groundhog Day, Star Wars

for key, val in movies.items():
print(key, val) prints each individual movie (the inner dictionaries)



10. Explain the TypeError you encountered.

The expression movies["Casablanca"]["year"] is an integer, and you can’t get the “length”
of an integer.

11. In the expression movies["Casablanca"]["genres"], describe the purpose of the strings
"Casablanca" and "genres".

They are keys to their corresponding dictionaries. The first string selects a particular movie,
and the second string selects the corresponding movie data.

12. When iterating a dictionary using a for loop (i.e., for x in movies), what gets assigned to
the variable?

The keys of the dictionary.

13. What is wrong with the following code that attempts to print each movie?

for i in range(len(movies)):
print(movies[i])

You cannot iterate a dictionary by index number;
it is not a sequence. Running this code results in
KeyError: 0.

14. Write nested loops that outputs (prints) every genre found under the movies dictionary.
Trace your code to ensure that it outputs a total of nine lines.

for key in movies:
movie = movies[key]
for genre in movie["genres"]:

print(genre)

15. Each movie in Model 2 has a title, a year, and three genres.

a) Is it necessary that all movies have the same format? No

b) Name one advantage of storing data in the same format: It simplifies the code

c) Show how you would represent The LEGO Movie (2014) with a runtime of 100 min and
the plot keywords “construction worker” and “good cop bad cop”.

"The LEGO Movie": {
"year": 2014,
"runtime": "100 min",
"keywords": ["construction worker", "good cop bad cop"],

},


	Nested Lists
	Nested Dictionaries

