
File Input-Output II and Exceptions

Model 1 File names and paths

Here are some useful commands when working with files:

Python code Description

import os A useful module for dealing with
filenames and paths

os.getcwd() Returns the path of the current
working directory as a string

os.path.abspath(’out.txt’) Returns the absolute (exact/longer)
path of the out.txt file as a string

os.path.exists(’out.txt’) Returns True/ False based on whether a
file with that name exists

os.path.isdir(’out.txt’) Returns True/ False based on whether
the path provided is a directory

os.listdir(’target/path/’) Returns a list with the names of the
files and directories residing at the
target path

os.path.join(’target/path’,’file.txt’) Takes a directory name and a file name
and joins them into a complete path

Model 2 with statement

To avoid forgetting to close a file, you may consider using a with statement for working with
files, that looks like this:

1 with open('out.txt', 'r') as out_file:
2 for line in out_file:
3 print(line, end = '')

1. Write the alternate version of this code that opens and closes the file as we learned in last
class:

1 out_file = open('out.txt', 'r')
2 for line in out_file:
3 print(line, end = '')
4 out_file.close()



2. Using the with statement write code that creates a file named lines.txt and writes 100 lines
like this:

Line #1
Line #2
Line #3
...

1 with open('lines.txt', 'w') as out_file:
2 for i in range(1, 101):
3 out_file.write(f"Line #{i}\n")

Model 3 Exceptions and how to catch them

When the file you are looking for in your code to read from does not exist or something goes
wrong when reading or writing from a file, the file system (which is part of the operating system
on your computer - be it Windows or MAC-OS) communicates it back to your program by
triggering an exception. Exceptions are what make our programs crash.
Recall that when our programs crashed in the past we interpreted it as a sign of an error (syn-
tactic and runtime errors). The difference between the errors that we studied prior in the class
and the exceptions triggered when working with files is that often times the later are beyond
the programmer’s control. For example, the file that the programmer is attempting to read may
be corrupted. For these cases (and these cases ONLY!), you may consider using a try-except
structure like this:

1 try:
2 out_file = open('out.txt', 'r')
3 for line in out_file:
4 print(line, end = '')
5 out_file.close()
6 except FileNotFoundError:
7 print('There is no file with this name')
8 except PermissionError:
9 print('You are not allowed to access this file')

10 except:
11 print('Something else went wrong, not sure what')

3. When an exception is triggered inside the try block, what does the program do?

It goes through the except headers in order (like in a if-elif structure) and executes the code
inside the first except header that is a match.



The following sample file called studentdata.txt contains one line for each student in an imag-
inary class. The student’s name is the first thing on each line, followed by some exam scores.
The number of scores might be different for each student.

joe 10 15 20 30 40
bill 23 16 19 22
sue 8 22 17 14 32 17 24 21 2 9 11 17
grace 12 28 21 45 26 10
john 14 32 25 16 89

4. Write a function called get_six_plus that takes in the name of the file and returns a list of
the names of students with more than six quiz scores.

1 def get_six_plus(filename: str) -> list:
2 lst = []
3 with open(filename, 'r') as fileobj:
4 for line in fileobj:
5 entries = line.split()
6 if len(entries) > 6:
7 lst.append(entries[0])
8 return lst

5. Write a function called print_averages that takes in the name of the file and prints the name
of the student and their average score on each line.

1 def print_averages(filename: str) -> None:
2 with open(filename, 'r') as fileobj:
3 for line in fileobj:
4 entries = line.split()
5 sum = 0
6 for sindex in range(1, len(entries)):
7 sum += int(entries[sindex])
8 print(entries[0],sum/(len(entries)-1))

6. Write a function called save_averages that saves students’ averages to a file called averages.txt
instead of printing them.

1 def save_averages(filename: str) -> None:
2 writeobj = open('averages.txt', 'w')
3 with open(filename, 'r') as fileobj:
4 for line in fileobj:
5 entries = line.split()
6 sum = 0
7 for sindex in range(1, len(entries)):
8 sum += int(entries[sindex])
9 average = sum/(len(entries)-1)

10 writeobj.write(entries[0]+' '+ str(average)+'\n')
11 writeobj.close()



7. Write a function called append_stats that saves students’ minimum, maximum and average
score at the end of the file, for example:

joe 10 15 20 30 40
bill 23 16 19 22
sue 8 22 17 14 32 17 24 21 2 9 11 17
grace 12 28 21 45 26 10
john 14 32 25 16 89

Stats:
joe [10, 40, 23.0]
bill [16, 23, 20.0]
sue [2, 32, 16.166666666666668]
grace [10, 45, 23.666666666666668]
john [14, 89, 35.2]

Hint: You may want to use a dictionary to save the stats for each student and then append them
to the file.

1 def append_stats(filename: str) -> None:
2 stats = {}
3 with open(filename, 'r') as fileobj:
4 for line in fileobj:
5 entries = line.split()
6 sum_scores = 0
7 min_score = 100
8 max_score = 0
9 for sindex in range(1, len(entries)):

10 sum_scores += int(entries[sindex])
11 if int(entries[sindex]) < min_score:
12 min_score = int(entries[sindex])
13 if int(entries[sindex]) > max_score:
14 max_score = int(entries[sindex])
15 average = sum_scores/(len(entries)-1)
16 stats[entries[0]] = [min_score,max_score,average]
17

18 with open(filename, 'a') as fileobj:
19 fileobj.write('\nStats\n')
20 for name in stats:
21 fileobj.write(name + ' ')
22 fileobj.write(str(stats[name]) + '\n')


	File names and paths
	[style=morepython]with statement
	Exceptions and how to catch them

