
Conditions and Logic I

Warm-up

Last class, we looked at sequences. Test your knowledge by answering the following questions:

Questions (10 min) Start time:
1. Evaluate each expressions in order and write down what it evaluates to. If an error occurs,
write what type of error. Place an asterisk (*) next to any output for which you are unsure.

Python code Output

seq1 = "one two"

type(seq1) <class ’str’>

len(seq1) 7

seq1[3] = ',' Runtime Error (str is immutable)

seq1.replace(' ',',')

print(seq1) 'one two'

seq2 = ["one", "two"]

type(seq2) <class ’list’>

seq2[1] = 1

print(seq2) [’one’, 1]

seq2.append(1)

print(seq2) [’one’, 1, 1]

seq2.count(1) 2

seq3 = 'abcdefg'

seq3[:] ’abcdefg’

seq3[::-1] ’gfedcba’

seq3[:-3] ’abcd’

seq3[:-3:-1] ’gf’

seq3[-3:] ’efg’

2. What are similarities and differences between lists and strings?

Answers may vary; they are both sequences, but are declared differently, strings with quotes
while lists with brackets and commas between elements. Lists are mutable while strings are
immutable.



Computer programs make decisions based on logic: if some condition applies, do something,
otherwise, do something else.

Model 1 Comparison Operators

In Python, a comparison (e.g., 100 < 200) will yield a Boolean value of either True or False.
Most data types (including int, float, str and list) can be compared using the following
operators:

Operator Meaning

< less than

<= less than or equal

> greater than

>= greater than or equal

== equal

!= not equal

Evaluate each expression in order and record the output for each line (if any) in the second
column.

Python code Output

type(True) <class ’bool’>

type(true) NameError

type(3 < 4) <class ’bool’>

print(3 < 4) True

three = 3

four = 4

print(three == four) False

check = three > four

print(check) False

type(check) <class ’bool’>

print(three = four) TypeError

three = four

print(three == four) True

three in range(0,17,4) True

3. What is the name of the data type for Boolean values? bool

4. Do the words True and False need to be capitalized? Explain how you know.

Yes, because type(true) resulted in NameError: name ’true’ is not defined.



5. For each of the following terms, identify examples from the table:

a) Boolean variables: check

b) Boolean operators: <, ==, >

c) Boolean expressions: 3 < 4, three == four, three > four

6. Explain why the same expression three == four had two different results.

The two variables were initially different values, so the first comparison was False. But later
on, the value of four was assigned to three, so the second comparison was True.

7. What is the difference between the = operator and the == operator?

The = operator assigns a value to a variable, and the == operator compares two values.

8. Write a Boolean expression that uses the != operator and evaluates to False.

5 != 5

Model 2 if/else Statements

An if statement makes it possible to control what code will be executed in a program, based
on a condition. For example:

def main() -> None:
number = int(input("Enter an integer: "))
if number < 0:

print(number, "is negative")
else:

print(number, "is a fine number")
print("Until next time...")

main()

Python uses indentation to define the structure of programs.
The line indented under the if statement is executed only when
number < 0 is True. Likewise, the line indented under the else
statement is executed only when number < 0 is False. The
flowchart on the right illustrates this behavior.

9. What is the Boolean expression in the code snippet above?

number < 0



10. What is the output when the user enters the number 5? What is the output when the
user enters the number -5? STOP HERE The instructor will trace the code with you using the
debugger.

5 is a fine number -5 is negative
Until next time... Until next time...

11. After an if-condition, what syntax differentiates between (1) statements that are executed
based on the condition and (2) statements that are always executed?

The indentation; statements that are indented under the if are based on the condition, and
statements indented at the same level (later in the program) are always executed.

12. What happens if you indent code inconsistently? For example, what would happen if
you entered print("Hello") into a Python Editor (where is a space), save the file as
hello.py, and run the program?

SyntaxError: unexpected indent

13. Based on the program above, what must each line preceding an indented block of code end
with?

A colon.

14. Write an if statement that first determines whether number is even or odd, and then prints
the message "(number) is even" or "(number) is odd". (Hint: use the % operator.)

if number % 2 == 0:
print(number, "is even")

else:
print(number, "is odd")

15. Does an if statement always need to be followed by an else statement? Why or why not?
Give an example.

No; you can have an if statement without an else. For example, you could determine that a
number is even and print a message, without printing a different message if it’s odd.

Model 3 Boolean Operations

Expressions may include Boolean operators to implement basic logic. If all three operators
appear in the same expression, Python will evaluate not first, then and, and finally or. If there



are multiple of the same operator, they are evaluated from left to right. Evaluate the following
expressions based on the variables a = 3, b = 4, and c = 5:

Python code Output

print(a < b and b < c) True

print(a < b or b < c) True

print(a < b and b > c) False

print(a < b or b > c) True

print(not a < b) False

print(a > b or not a > c and b > c) False

print(a not in [a,b,c]) False

print(a not in ['a',b,c]) True

print(a not in 'abc') TypeError (LHS: a not a str)

print(a not in 345) TypeError (RHS: 345 not a sequence)

16. What data type is the result of a < b? What data type is the result of a < b and b < c?

The type of each is bool; both are Boolean expressions.

17. What is the value of a < b? What is the value of b < c?

They are both true.

18. If two True Boolean expressions are combined using the and operator, what is the resulting
Boolean value?

True and True is True.

19. Write an expression that will combine two False Boolean expressions using the or operator.

a > b or a > c

20. Assuming P and Q each represent a Boolean expression that evaluates to the Boolean value
indicated, complete the following table. Compare your team’s answers with another team’s,
and resolve any inconsistencies.

P Q P and Q P or Q

False False False False

False True False True

True False False True

True True True True



21. Assume that two Boolean expressions are combined using the and operator. If the value
of the first expression is False, is it necessary to determine the value of the second expression?
Explain why or why not.

It is unnecessary, because “false and anything” is false.

22. Assume that two Boolean expressions are combined using the or operator. If the value
of the first expression is True, is it necessary to determine the value of the second expression?
Explain why or why not.

It is unnecessary, because “true or anything” is true.

23. Examine the last row of the table. Evaluate the Boolean expression following the order of
precedence rules. Show your work by rewriting the line at each step and replacing portions
with either True or False.

a > b or not a > c and b > c

False or not a > c and b > c
False or not False and b > c

False or True and b > c
False or True and False

False or False
False

24. Suppose you wanted to execute the statement sum = x + y only when both x and y are
positive. Determine the appropriate operators, and write a single Boolean expression for the
if-condition.

x > 0 and y > 0

25. Rewrite the expression from #24 using the not operator. Your answer should yield the same
result as in #24, not the opposite. Describe in words what the new expression means.

not (x <= 0 or y <= 0)
In other words, “both x and y are positive” is equivalent to “neither x nor y is negative/zero”.

26. Suppose that your team needs to execute the statement sum = x + y except when both x
and y are positive. Write a Boolean expression for this condition. How is it different from the
previous question?

not (x > 0 and y > 0)
To represent “except when” logic, we simply negate the original condition. The previous
question negated each of the operators as well, which is known as De Morgan’s law.


	Comparison Operators
	[style=morepython]if/[style=morepython]else Statements
	Boolean Operations

