Introduction to Python I

Model 1 Programmable Internal-State Machines

In this course, you will learn how to write instructions for the *Python machine* alongside the concepts they embody. Let's start with our first concept: the *programmable internal-state machine*.

Questions (5-10 mins)

Start time:

1. What do you think of when you hear the term *machine*?

2. What types of machines are there in the world, can you come up with categories or explain how they may be different? (**Hint:** Think an old coffee machine vs. an espresso machine that remembers to brew you a fresh cup of coffee every morning)

3. What do you think of when you hear the term *programmable machine*? (**Hint:** Think basic instructions)

What do you think of when you hear the term *internal-state machine*? (Hint: Think variables)

Model 2 Arithmetic Expressions

An instruction is represented in Python as an *expression*. A line in a Python program represents a *statement*. A statement can be made up of one or multiple expressions. There are two fundamentally different types of basic expressions: *function-call expressions* and *operator expressions*. We start with *arithmetic operator expressions*.

Questions (10 mins)

Start time:

4. In the "Result" column, write what value you expect will be the result. If there are any lines you are not confident about, place an asterisk next to your answer:

Python code	Result
2 + 3	
3 * 4 + 2	
3 * 4 + 2.0	
3 * (4 + 2)	
5 / 10	
5 / 10.0	
5 / 9	
2 ** 4	

5. What does the ** operator do?

6. For addition and multiplication to produce an output with a decimal value, what type of number must be part of the input? Provide justification for your team's answer.

7. Does division follow the same rule as in #6? Provide justification for your team's answer.

Questions (15 min)

Start time:

	Table A			Table B			Table C	
9 / 4	evaluates to	2.25	9 // 4	evaluates to	2	9 % 4	evaluates to	1
10 / 4	evaluates to	2.5	10 // 4	evaluates to	2	10 % 4	evaluates to	2
11 / 4	evaluates to	2.75	11 // 4	evaluates to	2	11 % 4	evaluates to	3
12 / 4	evaluates to	3.0	12 // 4	evaluates to	3	12 % 4	evaluates to	0
13 / 4	evaluates to	3.25	13 // 4	evaluates to	3	13 % 4	evaluates to	1
14 / 4	evaluates to	3.5	14 // 4	evaluates to	3	14 % 4	evaluates to	2
15 / 4	evaluates to	3.75	15 // 4	evaluates to	3	15 % 4	evaluates to	3
16 / 4	evaluates to	4.0	16 // 4	evaluates to	4	16 % 4	evaluates to	0

8. For each operator expression, identify the symbol of the operator and describe the type of numerical result.

9. If the result of the / operator were rounded to the nearest integer, would this be the same as the result of the // operator? Explain how the results in Table A compare to Table B.

10. If the table included more rows, list all numbers // 4 would evaluate to 2 and all the numbers // 4 would evaluate to 4.

11. Based on the results of Table C, propose another number % 4 evaluates to 0, and explain what all these numbers have in common.

12. Consider the expressions in Table C that evaluate to 1. How do the left *operands* in these expressions (i.e., 9, 13) differ from those that evaluate to 0?

13. Describe the reason for the repeated sequence of numbers (0, 1, 2, 3) for the result of % 4.

14. Recall how you learned to do long division in elementary school. Finish solving for $79 \div 5$ below. Which part of the answer is 79 // 5, and which part is 79 % 5?

15. Imagine that you are given candy mints to divide evenly among your team members.

- a) If your team receives 11 mints, how many mints would each student get, and how many are left over? Write a Python expression to compute each result.
- b) If your team receives 2 mints, how many mints would each student get, and how many are left over? Write a Python expression to computes this result.

16. Python has three division operators: "floor division", "remainder", and "true division". Which operator (symbol) corresponds to each name?

Model 3 Variables

In programming, variables are the way to save information for later usage in the internal-state of the program. An *assignment statement* saves a value to a *variable*. The variable "is set to" the value after the "=" *operator*. For example:

mass = 10

Consequently, when a variable appears in an expression or statement, the value associated with the variable is *accessed* or *read*. For example:

```
print(mass)
```

In this example, the value of *mass* is first *accessed/read* and then printed by the *print statement*.

Questions (15 min)

Start time:

Python code	Output
x = 12	
y = 2 + 5	
<pre>print(x,y)</pre>	
x - 1	
<pre>print(x,y)</pre>	
x = y	
<pre>print(x,y)</pre>	
y = y + 1	
<pre>print(x,y)</pre>	

Consider the code examples in the table below, evaluate them and indicate the output:

17. Pick one assignment statement from the table above, and identify the following:

- a) the variable being assigned
- b) the assignment operator
- c) the value of the variable immediately after the assignment

Interpreter	Basic Instructions Pad	State	

18. Show how the Python Machine interprets and executes the statements above:

19. Is the way of interpreting and executing code used in #18 closer to how *ActiveCode* 1 or *CodeLens* 2 can be used in the book? Explain your answer. (See the back of the handout for a picture of each)

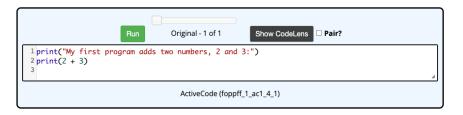


Figure 1: ActiveCode

<pre>1 print("My first program adds two numb) → 2 print(2 + 3)</pre>
→ line that just executed → next line to execute
< Prev Next >
Done running (2 steps) Python Tutor by Phillip Guo Customize visualization (NEWI)
Print output (drag lower right corner to resize) My first program adds two n 5
Frames Objects

Figure 2: CodeLens

20. After the successful execution of an assignment statement, how can you confirm the value of this variable?

- **21**. Indicate whether each statement below is true or false.
 - a) A variables can be set to different values throughout a program.
 - b) A variables can store multiple values at the same time.
 - c) The assignment operator works in Python just as it works in math.

22. Write a line of Python code to assign the current value of mass to the variable temp. Show output that confirms that you have done this correctly, and explain the code.